Digital Delay Generator, DG535

Supplier: STANFORD RESEARCH SYSTEMS MS
DG535
MSPP-DG535EA 6915.38 USD
MSPP-DG535
Digital Delay Generator, DG535
Batteries
The DG535 Digital Delay and Pulse Generator provides four precisely-timed logic transitions or two independent pulse outputs. The delay resolution on all channels is 5 ps, and the channel-to-channel jitter is typically 50 ps. Front-panel BNC outputs deliver TTL, ECL, NIM or variable level (−3 to +4 V) pulses into 50 Ω or high impedance loads. The high accuracy, low jitter, and wide delay range make the DG535 ideal for laser timing systems, automated testing, and precision pulse applications.

  • Less than 100 ps rms jitter
  • Adjustable amplitude and offset
  • Delays up to 1000 seconds
  • Optional ±32 V output
  • Standard GPIB interface

Output Amplitude Control : Each delay and pulse output has an independently adjustable offset and amplitude which can be set between −3 and 4 V with 10 mV resolution. The maximum transition for each output is limited to 4 V. In addition, you can also separately select 50 Ω or high impedance termination for each output. Preset levels, corresponding to standard logic families, can also be selected. TTL, NIM and ECL levels can all be selected with a single key press.

Triggering : The DG535 can be triggered internally from 1 mHz to 1 MHz with four-digit frequency resolution. External, single-shot and burst mode triggers are also supported. For power control applications, the DG535 can be synchronized to the AC line. An optional trigger inhibit input allows you to enable or disable triggering with a TTL input signal.

±32 Volt Outputs : For applications requiring higher voltages, a rear-panel high voltage (±32 V) option is available. This option provides five rear-panel BNCs which output 1 µs pulses at the transition times of the front-panel T0, A, B, C and D outputs. The high voltage option does not affect the function or the timing of the front-panel outputs. The amplitude of the rear-panel outputs is approximately 8× the corresponding front-panel output, and the outputs are designed to drive 50 Ω loads. Since these outputs can only drive an average current of 0.8 mA, charging and discharging the cable capacitance may Be the most important current limiting factor to consider when using them (assuming a high impedance load). In this case, the average current is: I = 2Vtf/Z, where V is the pulse step size, t is the length of the cable in time (5 ns per meter for RG-58), f is the pulse repetition rate, and Z is the cable's characteristic impedance (50 Ω for RG-58).

Internal or External Timebase : Both internal and external references may be used as the timebase for the DG535. The internal timebase can be either the standard 25 ppm crystal oscillator timebase, or the optional 1 ppm Temperature Compensated Crystal Oscillator (TCXO). The internal timebase is available as a 1 Vpp square wave on a rear-panel BNC. This output is capable of driving a 50 Ω load and can be used to provide a master timebase to other delay generators. Any external 10.0 MHz reference signal with a 1 Vpp amplitude can also be used as an external timebase.
Order Now

Learn more

About VWR

Avantor is a vertically integrated, global supplier of discovery-to-delivery solutions for...

Learn more About VWR